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Analysis of the dynamical behavior
for enzyme-catalyzed reactions with impulsive input
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Previous work has concentrated on the nature and validity of this reactions. In the
paper, the dynamical behavior of Michaelis–Menten type kinetics for enzyme-catalyzed
biochemical reactions is studied. Under the practical background, we investigate the
effects of impulsive substrate-input.

KEY WORDS: enzymatic-reactions, impulsive input, dissipation

AMS subject classification: 34A37

1. Introduction

It is well known that enzymes are fundamental to life and with prior knowl-
edge of the behavior of the enzyme most chemists, physicists, and chemical
engineers entered the realm of bio-reactions and have extensively studied their
functions within plants, animals, and microorganisms [1–4]. One of the greatest
value works is the simple yet powerful model which Michaelis and Menten, [5]
1913 produced to describe a single substrate plus enzyme to product reaction.
This isolated chemical reaction has been researched from diverse aspects in [6–
9]. Man and its environment are all open systems, however, and have exchange
for substance and energy in between. There are all kinds of energy input such as
constant input or periodic input. The model of constant input simulates this sim-
ple process of enzyme reaction that a living system can take substance from its
circumstances and release products to them [10]; that of periodic input describes
plant photosynthesis depend on light intensity and the process of absorbing car-
bon resources is periodic fluctuations in ideal [11]. Therefore, almost all enzy-
matic reaction in a living system should include substrate input and product
removal. But it is not suitable of such two class of inputs to elucidate the man-
ner of drugs into the body. We know that for some diseases human body doesn’t
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need the same dose of drugs in the whole day and will produce the resistance to
drugs in reverse. In fact, drugs metabolism is the reaction of drugs and enzymes
in the liver. So, it is very great value of impulsive differential equation [12] to pic-
ture this process of drugs in vivo. An understanding of the impulsive differential
model (see equation (3.1)) requires some familiarity with the elementary enzyme
reaction and the impulsive theory. The former is as follows; the latter will be dis-
cussed in section 2.

Based on experiments, Michaelis and Menten [5] proposed the basic enzy-
matic reaction which takes the following form:

S + E ⇀↽ C(ES) −→ E + P

Figure 1. The basic enzyme-substrate reaction.

where S,E,C(ES), and P denote, respectively, the free substrate, free enzyme,
enzyme-substrate complex, and the product concentrations.

According to figure 1, Menten wrote the following differential equations to
study the chemical reaction of the single substrate with enzyme:

ė = −k1es + (k−1 + k2)c,

ṡ = −k1es + k−1c,

ċ = k1es − (k−1 + k2)c,

ṗ = k2c,

(1.1)

where s, e, c, and p denote, respectively, the free substrate, free enzyme, enzyme-
substrate complex, and the product concentrations. The parameters k1, k−1, k2
are positive rate constants for each reaction.

In fact, only the second and third equations need thinking because they
have no relation with others in model (1.1).

Let e0, s0, and c0 denote, respectively, the initial values of e, s, and c. Add-
ing the first and third equation of system (1.1), we get

ė + ċ = 0.

That is

e(t)+ c(t) = constant = e0 + c0.

Namely,

e(t) = e0 + c0 − c(t). (1.2)

Our reaction system can be described completely by equation (1.3):

ṡ = −k1(e0 + c0 − c)s + k−1c,

ċ = k1(e0 + c0 − c)s − (k−1 + k2)c.
(1.3)
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So, we think over equation (1.3) instead of equation (1.1).
In the paper, we will first consider the enzyme reaction of constant input

and prove that state-steady is global stabilization with Dulac’s function [6] in
section 2. Section 3 prove the model of impulsive input is dispersive [7] and we
simulate periodic solutions in matlab in section 4 followed by a short conclusion
(section 5).

2. The model of constant input

First, we introduce three kinds of basic models, that is

u̇ = r1 − r2u, u(0) = u0 (2.1)

and

u̇ = −ru, t �= nτ,

u(t+) = u(t)+ p, t = nτ,

u(0+) = u0

(2.2)

and

v̇(t, x) � g(t, v(t, x)), t �= nτ ,
v(t, x(t+)) � ψn(v(t, x(t))), t = nτ . (2.3)

For equations (2.1)–(2.3), we have the following conclusions.

Lemma 2.1. System (2.1) has a positive equilibrium u∗ and for every solution u

of equation (2.1)

|u− u∗| → 0, as t → ∞,

where u∗ = r1
r2

.

Lemma 2.2. [13]. System (2.2) has a positive periodic solution u∗(t) and for every
solution u(t) of equation (2.2)

|u(t)− u∗(t)| → 0, as t → ∞,

where u∗(t) = pe−(r(t−nτ))
1−e−rτ , t ∈ (nτ, (n+ 1)τ ], n ∈ N .

Lemma 2.3. [13]. Let v ∈ v0. Assume that system (2.3)

D+V (t, x) � g(t, V (t, x)), t �= nτ,

V (t, x(t+)) � ψn(V (t, x(t))), t = nτ,
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where g: R+ × R+ −→ R satisfies (H) and ψn: R+ → R+ is non-decreasing. (H)
g is continuous in (nτ, (n+ 1)τ ] × R, and for x ∈ R+, n ∈ N ,

lim g(t, y) = g(nτ+, x), as (t, y) → (nτ+, x).

Let r(t) be the maximal solution of the scalar impulsive differential equation

u̇ = g(t, u), t �= nτ,

u(t+) = ψn(u(t)), t = nτ.

u(0+) = u0.

Then v(0+, x0) � u0 implies v(t, x(t)) � r(t), t � 0, where x(t) is any solution
of (3.1).

The process of enzyme reaction with constant input is shown in figure 2:

I(t) → S + E ⇀↽ C(ES) → E + P

Figure 2. The enzyme-substrate reaction with substrate input.

So, the model of constant input is:

ṡ = I0 − k1(e0 + c0 − c)s + k−1c,

ċ = k1(e0 + c0 − c)s − (k−1 + k2)c.
(2.4)

For this model (2.4), we demonstrate its dissipative in the plane.

2.1. The boundary of the model

Using the differential inequality theory, we will prove this system (2.4) is
boundary in the quadrant.

Theorem 2.1. R2
0+ = (x, y)|x � 0, y � 0 is an invariant domain of equation (2.4).

Proof. We know that

ṡ|s=0 = I0 + k−1c > 0 for all c > 0

and

ċ|c=0 = k1(e0 + c0)s > 0 for all s > 0.

So, if the arbitrary initial point p0(s0, c0) ∈ R2
+0, the cure described by equation

(2.4) still belongs to this region.



M. Sun and L. Chen / Analysis of the dynamical behavior for enzyme-catalyzed reactions 451

Theorem 2.2. If e0 + c0 > I0/k2, this system (2.4) has only one equilibrium and
no limit cycle in the plane.

Proof. Let the right of equation (2.4) equal to zeros and get its equilibrium
(s∗, c∗), namely

(s∗, c∗) =
(

(k−1 + k2)c
∗

k1(e0 + c0 − c∗)
,
I0

k2

)
.

We will study the behavior of this equilibrium in the quadrant and firstly make
it move the origin point through the following transition:

x = s + s∗, y = c + c∗.

We get

ẋ = −k1(e0 + c0 − y)x + k−1y,

ẏ = k1(e0 + c0 − y)x − (k−1 + k2)y. (2.5)

The secular equation of this systems is

λ2 + [k1(e0 + c0 − c∗)+ k1s
∗ + (k−1 + k2)]λ+ k1k2(e0 + c0 − c∗) = 0.

Obviously, all its eigenvalues are negative. By the eigenvalue theory so that this
equilibrium (s∗, c∗) is locally stable in the plane.

We will conclude that system (2.4) has no limit cycle by the Dulac’s func-
tion. Let

ṡ = I0 − k1(e0 + c0 − c)s + k−1c
.= P,

ċ = k1(e0 + c0 − c)s − (k−1 + k2)c
.= Q

and

B(s, c) = sα−1cβ−1,

where the parameters α and β are integers.

We compute

D = ∂(BP )

∂s
+ ∂(BQ)

∂c

= sα−2cβ−2[(α − 1)cI0 − k1α(e0 + c0 − c)sc + (α − 1)k−1c
2

+ k1(e0 + c0)(β − 1)s2c − k1βs
2c − β(k−1 + k2)sc].

Choose α = 0, β = 1, we get

D = s−2c−1[−cI0 − k−1c
2 − k1s

2c − (k−1 + k2)sc] < 0.
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So, by the Dulac’s theorem, we can reach the conclusion that this equilibrium
(s∗, c∗) is globally stable in the plane.

Theorem 2.3. System (2.4) is permanent.

Proof. First we consider the inequality below and compute the minimum of s(t)
in the quadrant. Because of c > 0, we get

ṡ > I0 − k1(e0 + c0)s for all t > 0.

Using lemma (2.1), from the above inequality we obtain the minimum s(t) of
system (2.4), that is,

smin = I0

k1(e0 + c0)
.

For some t∗ ∈ [t0,∞), if c(t∗) > (e0 + c0), we compute

ċ < 0.

So, there must exist T1, when t > T1, c(t) < e0 + c0.

That is

cmax < e0 + c0, for all t ∈ [T1,∞).

According to above reasoning, we know that

c(t) < cmax, for all t > T1

and deduce

ṡ < I0 − k1(e0 + c0)s + k1cmaxs + k−1cmax.

By lemma (2.1), solving this inequality, one can get the maximum

smax = I0 + k−1cmax

k1(e0 + c0)− k1cmax
.

Similarly, there exists a T2, so that

smin < s(t) < smax for all t > T2.

Therefore, we have the following inequality

ċ > k1(e0 + c0)smin − k1csmax − (k−1 + k2)c for all t > T2.

By lemma (2.1), we get this conclusion, that is,

cmin = k1(e0 + c0)smin

k1smax + (k−1 + k2)
for all t > T3.

This completes proof of theorem 2.3. ��
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3. The model of impulsive input

With an impulse perturbation, the above reaction rate equation (2.4)
become:

ṡ = I0 − k1(e0 + c0 − c)s + k−1c, t �= nτ,

ċ = k1(e0 + c0 − c)s − (k−1 + k2)c,

s(t+) = s(t)+ εI0, t = nτ,

(3.1)

similarly, where s, e, c, and p denote, respectively, the free substrate, free enzyme,
enzyme-substrate complex, and the product concentrations. The parameters
k1, k−1, k2 are positive rate constants for each reaction. The e0, s0, and c0 denote,
respectively, the initial concentration of e, s, and c. The ε (0 < ε < 1) is pertur-
bation factor of impulsive equation (3.1) and also positive constant. In the same
manner, we conclude R+ is the invariant manifold of equation (3.1).

Lemma 3.1. For the solution s(t) of equation (3.1), there exists a T1 > 0, such
that

s(t) > m1, as t > T1,

where m1 is a positive constant.

Proof. For all t since c(t) � 0, we get

ṡ > I0 − k1(e0 + c0)s.

By lemmas 2.2 and 2.3, we have

s(t) � x(t) and x(t) → x(t), as t → ∞,

where x(t) is the solution of

ẋ = I0 − k1(e0 + c0)x, t �= nτ,

x(t+) = x(t)+ εI0, t = nτ

and x(t) = I0
k1(e0+c0)

− εI0e
k1(e0+c0)(t−nτ)

1−ek1(e0+c0)τ , for t ∈ (nτ, (n+ 1)τ ].
For t ∈ (nτ, (n + 1)τ ], x(t) is a monotonic decreasing function of time t

and has a minimum value m1 at t = (n+ 1)τ , that is,

m1 = I0

k1(e0 + c0)
− εI0e

k1(e0+c0)τ

1 − ek1(e0+c0)τ
.

So, there must exist a T1 > 0, such that

s(t) � x(t) � x(t) = m1, as t > T1.

This completes proof of lemma 3.1.
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Lemma 3.2. For the solution c(t) of equation (3.1), there exists a T2 > 0, such
that

c(t) < M1, as t > T2,

where M1 is a positive constant.

Proof. For some t∗ ∈ [t0,∞), if c(t∗) > (e0 + c0), we compute

ċ < 0.

So, there must exist T2, when t > T2, c(t) < M1 = e0 + c0.

Lemma 3.3. For the solution s(t) of equation (3.1),there exists a T3 > T2 > 0,
such that

s(t) < m2, as t > T3,

where m2 is a positive constant.

Proof. As just mentioned,

c(t) < M1, as t > T2.

We get

ṡ < I0 − k1(e0 + c0)s + k1sM1 + k−1M1.

By lemmas 2.2 and 2.3, we have

s(t) � y(t) and y(t) → y(t), as t → ∞,

where y(t) is the solution of

ẏ = I0 + k−1M1 + k1M1y − k1(e0 + c0)y, t �= nτ,

y(t+) = y(t)+ εI0, t = nτ,

y(0+) = s0 > 0

and y(t) = I0+k−1M1
k1(e0+c0−M1)

− εI0e
k1(e0+c0−M1)(t−nτ)

1−ek1(e0+c0−M1)τ
, for t ∈ (nτ, (n+ 1)τ ].

For t ∈ (nτ, (n + 1)τ ], y(t) is a monotonic decreasing function of time t
and has a minimum value m2 at t = (n+ 1)τ , that is,

m2 = I0 + k−1cmax

k1(e0 + c0 − cmax)
− εI0e

k1(e0+c0−cmax)τ

1 − ek1(e0+c0−cmax)τ
.

So, there must exist a T3 > T2 > 0, such that

s(t) � m2 � y(t), as t > T3.

This completes proof of lemma 3.3.
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Lemma 3.4. For the solution c(t) of equation (3.1), there exists a T4 > 0, such
that

c(t) > M2, as t > T4,

where M2 is a positive constant.

Proof. By lemmas 3.1 and 3.3, we know

m1 � s(t) � m2, as t > max{T1, T3}.
Therefore, when t > max{T1, T3}, we get

ċ > k1(e0 + c0)m1 − k1m2c − (k−1 + k2)c.

By lemmas 2.1 and 2.3, we have

c(t) � z(t), z(t) → z∗, as t → ∞,

where z(t) is the solution of

ż = k1(e0 + c0)m1 − k1m2cz− (k−1 + k2)z,

z(0) = c0 > 0

and z∗ = k1(e0 + c0)m1/(k1m2 + k−1 + k2).
So, there must exist a T4 � max{T1, T3}, such that

c(t) � z∗

namely

c(t) � M2, as t > T4.

This completes proof of lemma 3.4 (Figure 3).

4. Graphs of periodic solutions

Figure 3 shows the graphs of periodic solutions with the same initial con-
ditions for figure 2.

5. Conclusion

This work has examined the dissipation and global behavior of enzymatic
reactions with impulsive input. Almost all beings in our planet depend on
enzymes to complete metabolize, respectively. In the chemical reaction, the form
of substrate input is various and it has actual background for impulsive input.
Our results better explain the problem with the process of using drugs in vivo [9].
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Figure 3. The three graphs are those of reactants x–y plane and time series, respectively. Initial
conditions is the same with figure 2. At fixed a = 1.3 for 75 � t � 100.
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